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Phase transitions of soft disks in external periodic potentials: A Monte Carlo study
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The nature of freezing and melting transitions for a system of model colloids interacting via the Derjaguin,
Landau, Verwey, and Overbeek potential in a spatially periodic external potential is studied using extensive
Monte Carlo simulations. Detailed finite size scaling analyses of various thermodynamic quantities, such as the
order parameter, its cumulants, etc., are used to map the phase diagram of the system for various values of the
reduced screening lengitag and the amplitude of the external potential. We find clear indication of a reentrant
liquid phase over a significant region of the parameter space. Our simulations therefore show that the system
of soft disks behaves in a fashion similar to charge stabilized colloids, which are known to undergo an initial
freezing, followed by a remelting transition as the amplitude of the imposed, modulating field produced by
crossed laser beams is steadily increased. The detailed analysis of our data shows several features consistent
with a recent dislocation unbinding theory of laser induced melting.
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I. INTRODUCTION ing mechanism for two-dimensional meltif$5,16 to sys-
tems under external potentials. For a two-dimensional trian-
The liquid-solid transition in two-dimensional systems of gular solid subjected to an external one-dimensional
particles under the influence of external modulating potenmodulating potential, the only dislocations involved are
tials has recently attracted a fair amount of attention fronthose that have their Burger’s vectors parallel to the troughs
experimentg 1-7], theory[8,9], and computer simulations of the potential. The system, therefore, maps onto an aniso-
[10-13. This is partly due to the fact that well controlled, tropic, scalar Coulomb gasr XY mode) [9] in contrast to a
clean experiments can be performed using colloidal particlesector Coulomb gas[15,16| for the pure two-dimensional
[14] confined between glass platgwoducing essentially a (2D) melting problem. Once bound dislocation pairs are in-
two-dimensional systejmand subjected to a spatially peri- tegrated out, the melting temperature is obtained as a func-
odic electromagnetic field generated by interfering two, ortion of the renormalized or “effective” elastic constants,
more, crossed laser beams. One of the more surprising ra¢hich depend on external parameters such as the strength of
sults of these studies, where a commensurate, ondhe potential, temperature, and/or density. Though explicit
dimensional, modulating potential is imposed, is the fact thatalculations are possible only near the two extreme limits of
there exist regions in the phase diagram over which one olzero and infinite field intensities, one can argue effectively
serves reentrarné —6] freezing/melting behavior. As a func- that a reentrant melting transition is expected on general
tion of the laser field intensity, the system first freezes from agrounds quite independent of the detailed nature of the inter-
modulated liquid to a two-dimensional triangular solid. A action potential for any two-dimensional system subject to
further increase of the intensity confines the particlessuch external potentials. The actual extent of this region
strongly within the troughs of the external potential, sup-could, of course, vary from system to system. In addition,
pressing fluctuations perpendicular to the troughs, whichhese authors predict that the autocorrelation function of the
leads to an uncoupling of neighboring troughs and to remeltFourier components of the densifthe Debye-Waller corre-
ing. lation function decays algebraically in the solid phase at the
Our present understanding of this curious phenomenotransition, with an universal exponent which depends only on
has come from early mean field density functiof@l and the geometry and the magnitude of the reciprocal lattice vec-
more recent dislocation unbindifg] calculations. The mean tor.
field theories neglect fluctuations and therefore cannot ex- Computer simulation results in this field have so far been
plain reentrant behavior. The order of the transition is preinconclusive. Early simulationglO] involving colloidal par-
dicted to be first order for small laser field intensities, thoughticles interacting via the Derjaguin, Landau, Verwey, and
for certain combinations of external potentigishich in-  Overbeek(DLVO) potential[14] found a large reentrant re-
cludes the specific geometry studied in the experiments angion in apparent agreement with later experiments. On closer
in this paper the transition may become second order afterscrutiny, though, quantitative agreement between simulation
going through a tricritical point. In general, though meanand experiments on the same systéut with slightly dif-
field theories are applicable in any dimension, the results arferent parameteysappears to be pod6]. Subsequent simu-
expected to be accurate only for higher dimensions and lontptions [11-13 have questioned the findings of the earlier
ranged potentials. The validity of the predictions of suchcomputation, and the calculated phase diagram does not
theories for the system under consideration is, therefore, ishow a significant reentrant liquid phase.
doubt. Motivated, in part, by this controversy, in Rdfl7] we
A more recent theory9] extends the dislocation unbind- have recently investigated the freezifmelting behavior of
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a two-dimensional hard disk system in an external potential.
The pure hard disk system is rather well studig@8—21] by
now and the nature of the melting transition in the absence of
external potentials reasonably well explored. Also, there ex-
ist colloidal systems with hard interactiop$4], so that, at
least in principle, actual experiments using this system are

possible. Finally, a hard disk simulation is relatively cheap to Ibl<ag e=a/2
implement and one can make detailed studies of large sys- N=16 ll<ag/2 f=do/2
tems without straining computational resources. By these Sy

) . : ; = =3"/2
calculations we obtained a clear signature of a reentrant lig- Sy

uid phase showing that this phenomenon is indeed a general
one as indicated in Ref9]. FIG. 1. Schematic picture of the simulation box geometry used
In the present paper we studied a system of particles inmainly for V§=0.2.
teracting by a DLVO potential in an external periodic poten- - ) ) ) .
tial, to determine on one hand whether this reentrance sce- In addition, a particle with coordinates ) is exposed to
nario is dependent on the range of interaction, and on th@n external periodic potential of the form
other hand to compare it with experimental res{iip B .
The phase diagfam has beene:omputed by an application V(x,y)=Vosin2mx/do). 2

of finite size scaling methods similar to the methods used iR constant in Eq. (2) is chosen such that, for a density
our study of the hard disk systems in external potenfibl3. p=N/S,S,, the modulation is commensurate to a triangular

The rest of our paper is organized as follows. In Sec. lljzttice of disks with nearest neighbor distaneg: d,
we specify the model and the simulation method including_ V312
s .

details of the finite size analysis used. In Sec. Ill we present
our results for both zero and nonzero external potential, iqh
particular, results for the order parameter and its cumulanté
with a discussion on finite size effects. We also present other
guantities such as order parameter susceptibility, correlation
functions, and heat capacity, which further illustrates the na-
ture of the phase transitions in this system. In Sec. IV we All of the data(unless otherwise indicate@resented for
discuss our work in relation to the existing literature on thisV5 <0.2 are obtained by a simulation in a rectangular box of
subject, summarize, and conclude. size S S, (S,/§,= J3/2) and periodic boundary conditions
in thex andy directions, i.e., exactly as in RefL7]. We will
refer to it as the “fixed box geometry” in the rest of the
paper.
A. The model For Vi #0 the external potential modulates the structure
of the fluid and the particles form troughs oriented in the
direction. In order to avoid unphysical results, 6§ =0.2
We study a system dfl soft disks in a two-dimensional we mainly used a box with periodic boundary conditions in
box of fixed volume interacting with the DLVO pair potential the x direction andmovable wallsn they direction, see Fig.
¢(ri;) [14] between particles andj with distancer; , 1, and we will call this the “variable box geometry.” The
simulation box volume is fixed as well as the side len§th
but in thex direction the box is divided into slabs of width
, (1)  dp, centered around the minima of the external periodic po-
tential. The wall at the end of each slab can move at ragst
upwards or downwards around its equilibrium positidn:
where R is the radius of the particles, x  <a, such that each slab has a variable length betv&en
=\/(e2/eoerkBT)2inizi2 is the inverse Debye screening —2ag and S+ 2as in the y direction. The averaged box
length, Z* is the effective surface charge, aegdis the di-  geometry still isS, /S, = \J3/2 as for the fixed one. The con-
electric constant of water. We useg=78 and, unless oth- straint for neighboring walls is to have a distance less than
erwise indicated, R=1.07 um andZ* =7800. Additionally  a¢/2: |c|<a¢/2. The walls are hard, so no particle can cross
we chose a temperature df=293.15 K, and the particle them. This is indicated as a thick solid line in Fig. 1. To
density such that the particle spacing of an ideal lattice imccommodate the particles in the box as well as possible,
a;=2.52578um. We then obtain different values for the additional “boundary” particles were placed in the center
reduced inverse screening lengitegs by varying « as  (f=dy/2) behind each wall at a distance ef=a/ /2. The
needed. In our simulation we seR2o0 be the unit length. boundary particles interact with the particles in the box by
The potential in Eq(1) mainly depends on the value g, the usual DLVO potential, but do not interact with each
so all features found for this system should be valid also foother. The motion of the walls is achieved with a Monte
slightly different values of the other parameters mentionedCarlo procedure keeping the volume constant, so we are still
above. in the N-V-T (but variable shapeensemble.

The main parameters which define our systemxargand
e reduced potential strengity /kgT=V} , wherekg is the
oltzmann constant.

2. Box geometry

Il. MODEL AND METHOD

1. Potentials

ZeXF(_Krij)
rij

o(rij)

(Ze)? ( exp(kR)
1+ kR

4ege,
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y effect bypass each other more easily—this is very unlikely

U L3 with purely local MC moves.

2. Observables

The potential energy of the system per particles com-

puted as
~ N

Ry G, L, 1
T = NiaT 21 12>| (i) +V(Xi,Yi) ()
a ~ —
J/S Gl =2m/d, and the heat capacity per particle from the fluctuations*of
o | Cv * *\)2

| o =Nd(e* (%)) @

I X B

e doﬁ: The nature of the fluid-solid phase transition in two di-

mensions has been a topic of controversy throughout the last
FIG. 2. Schematic picture of the system geometry showing the1Q years[15,16,19-21,24—-26 It is well known that true
direction G, along which crystalline order develops at the modu-long-range positional order is absent in the infinitely large
lated liquid to solid transition. The four vectors obtained by rotatingsystem due to low energy, long wavelength excitations so
G, anticlockwise by 60° and/or reflecting about the origin arethat translational correlations decay algebraically. According
equivalent. to the dislocation unbinding mechanigib,16,29, the two-
dimensional solid(with quasi-long-ranged positional and
The movable walls are chosen to give the system addilong-ranged orientational ordefirst melts into a “hexatic”
tional degrees of freedom to relax internal stress. We wer@hase with no positional order but with quasi-long-ranged
led to this geometry by some unphysical results when usingrientational order signified by an algebraic decay of bond-
the fixed box geometry and higher particle numbeks ( Orientational correlation. A second Kosterlitz-Thoul€ks')

of the hexatic into the liquid, where both the orientational

and positional orders are short ranged. Therefore a useful
B. The method order parameter in zero external field is the orientational or-

1. Numerical details der parameter. For a particlelocated atr j we define the

) . local orientational order
We perform N-V-T Monte Carlo (MC) simulations

[22,23 for the system with interactions given by Ed4) 1 M
and (2) for various values o¥/; and kas. l//e,jZN— - e,
Averages(-) of observables have been obtained with the b=
canonical measure. In order to obtain thermodynamic quanyhereN,, is the number of nearest neighbors angd, is the

tities for a range of system sizes, we analyzed various quar3aIngIe between the axf$— r.and an arbitrary reference axis.
tities within subsystems and uséd, to denote averages in For the total system we u]se

it. The subsystems are of sizg XL, whereL, andL, are

chosen ad.,=Las and szLy\/§/2:Ldo, consistent with 1 N

the geometry of the triangular lattice. A sub-box of slze he= N E P

=3 as shown in Fig. 2 contains on averdge=L2=9 par- =t

ticles. _ _ _ and the orientational correlation function
Most of the simulations described below have been per-

formed for a total system size di=1024 andN=4096 96(rij) =(¥s;vej)l-

particles, additional ones wittN=400. Phase transitions o )
have been studied in most cases by starting with the ordered IN an external periodic field given by E), however,
solid and increasingas for fixed V2 . Runs wherexa, is the bond-orientational order parameter is nonzero even in the
decreased were also performed for comparison. fluid phas€[9,12]. This is because fovg #0 we have now a

A typical simulation run with 16 Monte Carlo steps Modulated” liquid, in which local hexagons consisting of
(MCS) per particle(including 3x10° MCS for relaxatioh the six nearest neighbors of a particle are automatically ori-
took about 50 CPU hours on a Pll 500-MHz PC. In additionented by the external field. Thigs) is nonzero both in the
to ordinary (loca) MC moves, we also used “trough (modulated liquid and the crystalline phase and it cannot be
moves,” by which particle placements in neighboring Used to study phase transitions in this system. The order
troughs are tried. Besides producing faster equilibration, inParameters corresponding to a solid phase are the Fourier
cluding such moves ensures that at highthe formation of ~ components of thénonuniform density p(r) calculated at
dislocations is not artificially hindered since particles can inthe reciprocal lattice point{aé}. This (infinite) set of num-
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bers are all zergfor G#0) in an uniform liquid phase and
nonzero in a solid. We restrict ourselves to the star consisting

of the six smallest reciprocal lattice vectors of the two-
dimensional triangular lattice. In the modulated liquid phase 0.6
that is relevant to our system, the Fourier components corre
sponding to two out of these six vectors, viz., those in the
direction perpendicular to the troughs of the external poten-u . [ |7°
tial, are nonzerd8]. The other four components of this set sk | —

consisting of the one in the directidﬁl (as defined forthe | | 7
ideal crystal in Fig. 2 and those equivalent to it by symme-
try, are zero in thelmodulated liquid and nonzero in the

solid (if there is true long-range ordeMVe therefore use the
following order parameter:

—— = 00 Y U AW

~NWO

{anll onll nll ol ol ol ol o

04

T R B B . .

H
14 14.1 14.2 143 144 14.5 14.6

Ka
s

N
e, = J_Zl exp(iGy-r))

Z| -

FIG. 3. Cumulant of theys order parameter versugas for
. various values of the system sike(N=4096, V§ =0).
wherer; is the position vector of thgth particle. The corre-

sponding susceptibilityg, is In order to distuingish between the cumulantsjgfandyg ,
o ) ) we denote them witlJ_ ¢ and U, g, respectively. In the
KeTxc,=L [<(‘/’G1) >_<‘/’Gl> I ®) liquid (short-ranged ordeiJ, —1/3 and in the solidlong-

range order U, —2/3 for L—«. In case of a continuous
To measure the positional correlation, we chose the Debyaransition close to the transition point, the cumulant is only a
Waller correlation function, which we define as follows: function of the ratio of the System SizeLaS and the corre-
. .. lation lengthé: U (Lag/€). Sinceé diverges at the critical
Cg,(R)=|(e'Cr [MRuO)], point, the cumulants for different system sizes intersect at
one point:ULl(0)=UL2(0)=U*. U* is a nontrivial value,

whereR points to the elementary cell of the ideal lattice, andi-e., U* #1/3 andU* #2/3. Even for first-order transitions

G(R) is the deviation of the actual particle position from the these cumulants intersei@8] though the valu&J* of U, at
the intersection is not universal any more. The intersection

|o!eal Fattlce.fz R_+U(R)' In this f:as.e we have chosen the point can, therefore, be taken as the phase boundary regard-
direction ofR to lie along they axis (i.e., along the troughs |ess of the order of the transition. This is useful since the
of the potential. In the solid we expect this quantity do order of the melting transition in 2D either in the absence
decay algebraically, i.eCg(y)=1/y7¢ [9,15], whereng de-  [15 16,19-21,24—26or with [8—13 external potentials is
pends on the elastic constants. not unequivocally settled. And there is also another aspect in
g, is sensitive to the phase transition where positionabyr special case: since the positional order correlation is pre-
order is lost. Therefore, when decreasmyj we expect the dicted to decay algebraically in the solid phdgeasi-long-
phase boundary to converge to the corresponding transitioranged order the whole solid can be seen as consisting of a
at zero external potential. But in contrast\§ #0, where line or area of critical points with temperature-dependent
the crystal is oriented by the external potentialat=0 itis  critical indicesng(T) [15]. In that case we expect the cumu-
only weakly fixed by the boundary conditions and can starfants to merge at a nontrivial value at the onset of the solid

We indeed observed this behavior for hard disks in high ex-

use a slightly modified positional order paramelle, at  (grna| potential§17]. For the same reasons the same behav-
Vg5 =0: the phase information af (of course, before taking ior is expected for theys cumulants at the liquid-hexatic
the absolute valyds used to determine the orientation of the transition and in the hexatic phagkd]. Also the very similar
crystal, and then a tilted coordinate system is used to con2D-XY-spin model shows this behavior when using the mag-

pute Ys,. We applied the same method when calculatingnetization as the order paramefee).
Ca.(y) atVg=0 Note that though the order parame(epGl) decays to
) :

We have determined phase transition points by the ordef€® With incr(?asing system size ﬁven in the 2ID S(ﬁd,'”
parameter cumulant intersection method. The fourth-ordepUMing quasi-long-ranged order theréne cumulants wi
cumulantU, of the order parameter distribution is given by St&y at the nontrivial value regardless lof So for L —c

[27]; there should be a jump from 1/3 to this nontrivial value when
crossing the phase boundary from liquid to solid, which un-
<¢4>L derlines the usefulness of cumulants.
U (VE kag)= 1—% (6) In order to map the phase diagram we systematically vary
(ot the system parameteYg;, and «as to detect order parameter
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FIG. 4. Average(top) and cumulantbottom) of theTpGl order
parameter versugag for various values of the system site(N
=4096, Vi =0).
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o

0.125

0.0625

FIG. 5. Debye-Waller correlation function versydor various
values ofkag(N=4096, V§=0). Dashed line, schematic picture
of the functional decay with exponent 1/4; dotted line, schematic
picture of the functional decay with exponent 1/3.

Young (KTHNY) two stage melting scenario, in which the
solid and the fluid phase are separated by a hexatic region in
the phase diagram, in which the positional order is short
ranged and the bond-orientational order is long ranged. Both
effects are detected by the two order parametggsheing

sensitive for the bond-orientational order aﬁ@l on the

positional order. Surprisingly, however, though in the case of
the hexatic phase one expects fhgcumulants to coincide,
they obviously do not in Fig. 8see also Ref.19]).

The Debye-Waller correlation functior@Gl(y) for dif-

ferent values ofkag are shown in Fig. 5. At the transition
value kga,= 14.25 forN=4096 we find a power law depen-
dency ofCg (y) fromy with an exponentyg ~0.28, which

is well within the predicted range ¢fLl/4,1/3. In Fig. 6 the
orientational correlation function versus distance is shown.
This function reveals a power law dependency of the bond-
orientation correlations atga, the exponents value is about

cumulant intersection—or merging points, which are them/4. The value of the exponeny at the transition has been

identified with the phase boundary.

0.5
IIl. RESULTS AND DISCUSSION

A. Zero external potential

In this section we analyze the system properties for zera 0.25

external field. In particular, we present results for the order, «
parameter, the cumulants, the correlation functions, and the 6
heat capacity for different values af. In these studies we 0.125
used the fixed box geometry.

In Fig. 3 the cumulant of th&yg order parameter versus
kag is shown for different subsystem sizes. We identify the ¢ o625
phase transition value afgag at about 14.42 by locating the
cumulant intersection point. Since the positional order is not
well defined in two-dimensional systems, the positional or-

der parametefbGl shows a strong system-size dependency,

see Fig. 4. The cumulants Gﬁ'Gl intersect at a value of

kgas~14.25, which is slightly smaller thakgas. This is in
agreement

056109-5

FIG. 6. Orientational correlation function versus distance for
various values okas (N=4096, V§=0). Dashed line: schematic
with a Kosterlitz-Thouless-Halperin-Nelson-picture of the functional decay with exponent 1/4.
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FIG. 8. System evolution versus Monte Carlo steps (
=400, V§ =0, xas=14.4). From bottom to top: energs*, i
order parameter, angle of lattice direction,ig order parameter,

.

time evolution of that system in Fig. 8. We also show the
08 -11 configuration of a tilted crystal withw=30° (3,000,000

14 145 15 55 16 165 17 175 MCS) in Fig. 9 (top), and of an “correctly” aligned crystal
Ka_ (a=0°, 7,700,000 MC$(bottom.

FIG. 7. Heat capacity versusag for various numbers of par-
ticles. Top figureV§ =0 computed with fixed box geometry. Bot-
tom figure:V§ =2 computed with variable box geometry.

predicted by the KTHNY theory to be 1/8], which is in
agreement with our results.

In Fig. 7 (top) we present the heat capacity data versus
kag for different system sizes. It is obvious that the heat
capacity does not show a singularity as would be expected in
case of a first-order or a conventional second-order transi-
tion. The peak maxima are not very sharp, but are roughly
located close to the value a&fzas, where theyg order pa-
rameter cumulants intersect. The peak maxima thus do not

agree with the cumulant intersection point of t}z}gl order

parameter, which is again in agreement with the KTHNY
scenario. We note that the identification of the phase transi-
tion point by the heat capacity maxima may result in mis-
leading results on the location of the transition points in the
phase diagram. In particular, for a smaller systemNof
=400 particles we find that configurations wherein the crys-
tal is rotated by a tilt angle o= *+30° (a extracted from
the phase information ofg) may be present. Since this is
incompatible with the box geometry it leads to a higher en-

ergy and a lower measure/zbl. The value oprGl, on the

0.0 6960526%20%0900,9,
030 o
So S °o°o°ogooo°°

0 10 20 30 40
*/(2R)

FIG. 9. Configurations after 3000 000 MQ®p) and 7 700 000

other hand, is not appreciably altered. This is shown in theMCS (bottom) from the system of Fig. 8.
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FIG. 11. Averagdtop) and cumulantbottom) of the Yo, order

FIG. 10. Averag€gtop) and cumulantbottom of the z/xGl order

parameter versugag for V§=2 and various system sizas(N
=4096).

parameter versusag for V§=1000 and various system sizes
L(N=4096).

modulated liquid at higheVg (“reentrance’. This is al-

ready a first sign of a reentrant phase transition scenario. For
In this section we analyze the system properties in thehe phase diagram, these cumulant intersection or merging

presence of a periodic external potential. The studies in thigajues were used.

section are mainly done with variable box geometry. Com- |n Fig. 13 the cumulant intersection values are shown as a

parative studies with fixed box geometry show that thefynction of V3 for fixed box geometry. We observe that

method does not lead to artificial features, but rather giveg not an universal number but, nevertheless, goes to a lim-
improved results. For more details see the discussion of thﬁng value for largeV [29].

Debye-Waller correlation function at the end of this section. 114 hysteresis effects on the location of the transition

Two examples for thecas dependency of the/g, order  ,5int have been analyzed for the caseVif=2 by a time
parameter and the cumulants for an external potential ampleonsuming reverse density quench simulation, in which a
tude of Vg =2 andVg =1000 are shown in Figs. 10 and 11. path in phase space was chosen in the direction opposite to
We note that the cumulant intersection, which can be clearlyhe standard path. The results of this study are shown in Fig.
identified for V5 =2 in Fig. 10 is developing towards an 14. Comparing these results with those of Fig. 10 reveals
intersection “line” for Vi = 1000, a behavior that was found quite close agreements showing that only small hysteresis
in case of the hard disk system in external potenfia§ as  effects are present in the system.
well as in related systems with a KT transition like the ThegbG1 order parameter susceptibilitiyz51 are shown in
XY-spin model[29]. Another example is shown in Fig. 12. Fig. 15 versusca, for different system sizes. We note that
Therexay is kept fixed at 15.3 andj is varied. The starting close to the transition a maximum develops, the value of the
point atV5=0.2 is in the modulated liquid phase, crossesmaximum increasing with the system size. In Fig. 16 the
slightly the solid(“laser induced freezing}, and reenters the susceptibilities of the largest subsystenis=(32) as func-

B. External periodic potential
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FIG. 12. Averagdtop) and cumulantbottom of the i -order
parameter versu¥g for xa;=15.3 and various values df and
variable box geometryN=1024).

tions of xas are compared for different values off .
Clearly the peak position fovg =2 is shifted to larger val-
ues compared to the cases wWith=0.2 andV§ = 1000. This
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FIG. 13. Cumulant intersection values of tlﬁ@l-order param-

eter versusvy for fixed box geometry l=1024). The data for
variable box geometry is similar.

exponential decay is not monotonic, but ad,=15.7,
CGl(y) drops to zero ay=S,/2, which is not physically
meaningful. At a higher valuea,= 16 it rises and then falls
again atkags=16.4, showing an exponential decay as ex-
pected. In variable box geometry this feature does not show
up, see Fig. 17bottom. Here we have a smooth transition
from solidlike to liquidlike behavior. We explain this strange
behavior atka;=15.7 in fixed geometry as follows: consider

a system withN=10000 particles. Without dislocations
there will be an ideal lattice witN,= 100 particles in each of
the 100 troughs. Assuming dislocation unbinding as the melt-
ing mechanism, consider the existence of some dislocations

in the system with opposite burgers vectbrs taséy. One

of these dislocations increases the number of particles in the
troughs by one, while the other decreases it by one. We can
have, for example, a situation where half of the troughs has
100 particles, and the other half has either 101 or 99 par-
ticles. If we now for simplicity assume that the distance be-

feature is another sign of a “reentrant” phase transition sce-

nario in the phase diagram. Compared to the cumulant inter: | i
section valuesyg, maxima are located at slightly higher

kag. This may be due to finite size effects, which often show
the feature that phase transition points in finite systems are
shifted to slightly different values depending on the observ-

able under investigation. In particular, one expdetsd we

ged a shift towards parameter values in the disordered regior ¢
(here a liquid, i.e., highekag) for the average order param-

eter and the susceptibility.
In Fig. 7 (bottom) the heat capacity fovg =2 and differ-

ent system sizes is shown. The peak is nearly independent ¢
system size and shifted towards the liquid phase with respec
to the order parameter cumulant intersection value, i.e., the | | | | b

same behavior as forg =0.

The advantage of the variable box geometry, especially

0.65

0.6

15 15.2 154 15.6 15.8
Ka

for large systems, can be seen best by looking at the Debye-

Waller correlation function. In Fig. 17top) an example is

FIG. 14. Cumulant of theﬁel order parameter versusag for

shown for fixed box geometry. The crossing from the solidv§=2 and various system sizésfor a density quench path\(
phase with an algebraic decay to the modulated liquid with=4096).

056109-8



PHASE TRANSITIONS OF SOFT DISKS IN EXTERNA. . .

14

FIG. 15. Susceptibility of theg//G1 order parameter versusg
for V§ =2 and various values of the system sizgN=1024).

tween particles in a row ia=L,/N;, calculating the pair
correlation functiorg(y) along a trough will yield two peaks
aroundy=L/2: one centered exactly gt=L,/2 from the
troughs withN,=100 (a=as), and the other centered wt
=Ly/2+agd2 due to the troughs withN;=99 or N,
=101 (@a+ay). As consequenc@el(y: L,/2) will be zero.

The same situation in the movable-wall geometry will not
show these problems: the troughs with 101 particles can ex 02
pand a bit, while those with 99 particles can contract. Now in

every trough,a=ag, and CGl(y=Ly/2) is not necessarily

zero. Also, the formation of a dislocation pair costs less en- 0
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ergy and is closer to the true infinite system value. The dis- y

cussion above is in some sense similar to the XDspin

model with a vortex in the center: in an infinite sample, the FIG. 17. Debye-Waller correlation functidhg, (y) versusy for
spins to the left and to the right have opposite spin direcVs =2 and various values ofas(N=4096). Correlations for com-
tions, but periodic boundary conditions in a finite system will Putations with fixed box geometiyop) and variable box geometry
try to align them, so that the formation of the vortex is dis- (bottom.

turbed. Free boundary conditions will not cause this prob-

lem.
20 ) ) ) I L L ) ) I L] L] L) L)

i o0—o i

- o Vo=02 [

- H 3 2 "B -8 VO =2 -
15 JANY + H
' g % B[00 Vo=1000
10~ -
s '5' ‘ m
st \ e ]
i &.\\\ g
-3

0 L 1 1 L I ] ] L 1 I ] ] 1 1 I
15 16 17

FIG. 16. Susceptibility of thejs order parameter versueas
for various values o¥/§ (L=32, N=1024).

In zero external potential with fixed geometry the forma-
tion of a dislocation pair is not so problematic, since the
particles are not forced into troughs and have more degrees
of freedom in movement. In the above example one end of a
line of N;=101 particles could make a slight shift in tke
direction to access more space in thdirection.

However, at the first data point in the solid closest to the
transition, we find an algebraic decéy;l(y)oclly”Gl with

e, in the range of 0.25-0.34 foWg=0-1000 andN
=1024 particles. In Ref9] 7, is predicted to be 1/4 at the
transition.

C. The phase diagram

For eachxag andVj value we computed cumularity
for a range of subsystem sizesand located intersection or
merging points which we identify with the phase boundary.
We have obtained a detailed phase diagram Ne+1024
particles, which is shown in Fig. 18 for fixed box geometry
(top) and for variable box geometribottom. We want to
emphasize that there are only slight differences and the gen-
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FIG. 18. Phase diagram. The points show the parameters for the FIG. 19. Finite size effects on the phase diagram. The points

cumulant intersection of th¢Gl order parameterN=1024). Top
picture: computations with fixed box geometry for ¥ . Bottom
picture: computations with variable box geometry for &jj . At
V§ =0 the parameters for the cumulant intersection ofitgerder
parameter are shown for comparison.

show the parameters for the cumulant intersection of«/tgleorder
parameter for different total system sizes. Top picture: computations
with fixed box geometry for alV§. Bottom picture: computations
with variable box geometry for aW; .

variable box it is much smaller at medium and high. We

eral shape of the phase diagram is the same for both boXso found that the cumulant intersection point smears out
geometries. AtVA =0, also theys cumulant intersection strongly if using the fixed boxN=4096 and highelvg ,

value is plotted for comparison. The values #d at the
transition initially rise and subsequently drop ¥§ in-
creases. The maximurizas values are found fovg~1-2.

probably for the same reasons as those mentioned in the
discussion of the Debye-Waller correlation function. In the
variable box there was no such problem. These features were

These transition points separate a high density solid from € reason for us to use mainly the fixed box¥§r<0.2 and
low density modulated liquid. Thus, at a properly choserthe variable box folg=0.2. By the way, the same Debye-
kag, we observe an initial freezing transition followed by a Waller problem also occurs when simulating hard disks in
reentrant melting at a highar¥ value. Such an effect had external periodic potentialdN=4096 andVg medium or
been found earlier in experiments on colloidal systems in afligh, and can be solved again by using the variable box

external laser fieldi4—6].

In order to quantify residual finite size effects on the

geometry.
However, for all system sizes the structure of the phase

phase diagram, we have computed the transition points fd#iagram with a pronounced minimum at intermediate values
different total system sizes. The resulting phase diagrams a@ Vg is not affected by the shifts.

shown in Fig. 19, again for fixedtop) and variable box

We find difference in the value ofzag at the transition

geometry(bottom). We note that with increasing system size between the infinite and zero external potential cases to be
in fixed box geometry, all transition points are slightly kgas(Vg==)—kgas(Vg=0)~0.82. This is not far away
shifted to the solid region, whereas for the variable box thisrom 0.608 which is a value predicted by RES).

shift is towards the liquid region. One can see that the shift We have also performed simulations with slightly altered

for the fixed box is much smaller at low? , and for the

parameters, i.e., using particles with diamet&=23 um,

056109-10



PHASE TRANSITIONS OF SOFT DISKS IN EXTERNA. . . PHYSICAL REVIEW E 66, 056109 (2002

effective surface charg€*=20000, andas=8 um, to  [9] (2b=»=1/4, c=1.75, »=0.5). The situation is simi-
match the experiments in Reff6]. As expected, we only lar for smallV =2, the quality of the collapse being com-
observe a slight shift of the phase diagram &fxag) parable to that o/ =1000. The critical parameters were
~0.35 towards higher values otas. The experimental obtained in this case for values 154a,<16.2, with
phase diagrani6] qualitatively has the same shape as ourkga,=15.37.

results, but shows larger freezing and reentrance regions and We have a good internal consistency between
is shifted to higher values ofa; at aboutA(«as)~4.5 on  7=0.25-0.33 extracted from the Debye-Waller correlation
average. The reasons for these differences are probably dégnction, and the values obtained from data collapsing:

to the particle interaction. We only use pairwise interaction,= (.28 for V& =1000 andy=0.36 for V§ =2. Our results
which is a good approximation for low particle densities for the numerical values of the parameters are summarized in
[30]. But for higher particle densities many-body interactionsTaple |.

play a role because of macroion screening, which results in - A more precise classification of the phase transitions with
an effective pair potential that has considerable deviationghe present data and system sizes is not easy. This topic is
[30] from a pure Yukawa-like potential like ours. In particu- |eft for future work, in particular, we plan to compute the

lar, there could be an attractive part. elastic properties of the system by a method recently devel-
oped for the hard disk systefi21,26 and to test the KT
D. Scaling behavior predictions|9].
We next try to determine the order of the phase transitions
encountered in this system for two valuesu§f. In order to IV. SUMMARY AND CONCLUSION

investigate this issue we studied the scaling behavior of the |, summary, we have calculated the phase diagram of a
order parameter, susceptibility, and the order parameter cyy,o_dimensional system of soft disks, interacting via a
mulant near the phase boundary for a sn@@lland a large b vo potential, in an external sinusoidal potential. We find

(1000 Vg - L . ) freezing followed by reentrant melting transitions over a sig-
From the finite size scaling theofjor an overview, see pificant region of the phase diagram in tune with results on
Ref.[23]) we expect these quantities to scale[ 3] hard diskg17], previous experiments on colloifé—6], and

with the expectations of a dislocation unbinding the[8y.
One of the main features of our calculation is the method
—c used to locate phase boundaries. In contrast to earlier simu-
xikgTL*~g(L/8), ®  Jations [10-13, which used either the jump of the order
parameter or specific heat maxima to locate the phase tran-
UL ~h(L7¢). ©) sition, we used the more reliable cumulant intersection
Here b=B/v, c=+lv (for critical scaling, and f, g, h method. It must be noted that the specific heat in_this syste'm
. . L~ does not show a strong peak at the phase transition density,
are scaling functions. Defining=(xas— xcas)/keds, We g4 that jts use may lead to confusing results. This, in our
expect the correlation length to diverge astecx~" for an  opinion, may be the reason for part of the controversy in this
ordinary critical point, while for a KT transition we have an field. It is possible that earlier simulations which used
essential singularity angxexp@x ") when approaching the smaller systems and no systematic finite size analysis may
transition from the liquid side. have overlooked this feature of,, which becomes apparent
In Fig. 20 we have plotted the left hand sides of Egs.only in computations involving large system sizes. We have
(7)—(9) versusL/§& for Vi =1000, where data points of the shown that finite size scaling of the order parameter cumu-
variable box geometry for 152«a.,<16.0 have been con- lants as obtained from subsystem or sub-block analysis, on
sidered andkgas=15.1, obtained by cumulant intersection. the other hand, yields an accurate phase diagram.
In order not to introduce an unwarranted bias, we have sepa- What is the order of the phase transition? We know that
rately considered ordinary critical scalidgft column anda  [19-21 for the pure hard disk system in two dimensions,

KT scaling form(right column and adjusted the values of this question is quite difficult to answer and our present un-
the parameters, ¢, andw, or a, b, ¢, and, till we obtained derstandind21] is that this system shows a KTHNY transi-

the collapse of our data onto a single curve determined by HON- In our system of soft disks, for zero external potential

least squares estimatbiGood collapse of our data is ob- W€ can rule out a strong first-order transition, although

served for both scaling forms, the numerical values for smaller systems show a featiq _uble pegk In the internal

b and c=2 for K’T scaling (b~0.28, c energy that mimics such a behavior. We find several features
= 7]1 = - 7] ~Y. !

~ . i which are consistent with the KT theory, but also one which
~1.70, v~0.37) are relatively close to the predicted valuesijs not. Upon turning on the external periodic potential, the
difference between the hexatic and liquid disappears, and an
(anisotropi¢ KT transition [9] from the modulated liquid
0ne remark concerning the KT scaling: the errorgianda are  into the solid is expected. Our results show several features
relatively big because, for example, increasingnd decreasing which suggest that this is what we have, but there are still
by an appropriate amount resulted in a nearly equally good colsome (not largg deviations from theory. Though we have
lapse. discussed these observations in the rest of the paper, we list

(Yo )L~ F(L/E), (7
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FIG. 20. Scaling plots for the order parametfirst line), the order parameter cumulafsecond ling and the order parameter suscep-
tibility (third line) for V§ =1000 assuming criticdleft column and KT scalingright column. The total system size = 1024, for¢ we
have used the expressions given after ©g.

TABLE I. Parameters in the scaling pldisee Fig. 20for V§ =2 andV§ =1000. The first three param-
eter columns are for critical scaling, the last four for KT scaling. The last line shows the predictions of KT

theory.
Kgas b c v b c 7 a
V§ =1000 15.1 0.13012) 1.61(8) 1.52) 0.141) 1.703) 0.3716) 1.4540
5=2 15.37 0.16815 1.685 15125 0.183) 1.743) 0.405) 1.203)
KT theory 0.125 1.75 0.5 0(1)
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the important ones below for clarity. yet larger simulations are required. Also, we need to compute
(1) The behavior of the cumulants near the transition iselastic propertie§21,26 of this system in order to compare
similar to an earlier worl{29] on the XY system which directly with the results of Ref9]. Work along these lines is
shows a KT transition. in progress.
(2) The specific heat is relatively featureless and does not
scale with system size in the fashion expected of a true first-
order or conventional continuous_ transitio_n. S V. ACKNOWLEDGMENTS
(3) The decay of the correlation functions is similar to
what is predicted9] for an anisotropic scalar Coulomb gas.  We are grateful for many illuminating discussions with C.
(4) For two test values o¥/§ , the scaling of the order Bechinger and K. Binder. One of §S.S) thanks the Alex-
parameter, the susceptibility, and the cumulant may be reaander von Humboldt Foundation for financial support. Sup-
sonably described by the KT theory. port by the SFB 513 and granting of computer time from the
Of course, in order to resolve this issue unambiguouslyNIC and the HLRS are gratefully acknowledged.
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