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Phase transitions of soft disks in external periodic potentials: A Monte Carlo study
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2S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Calcutta 700098, India
~Received 25 June 2002; published 19 November 2002!

The nature of freezing and melting transitions for a system of model colloids interacting via the Derjaguin,
Landau, Verwey, and Overbeek potential in a spatially periodic external potential is studied using extensive
Monte Carlo simulations. Detailed finite size scaling analyses of various thermodynamic quantities, such as the
order parameter, its cumulants, etc., are used to map the phase diagram of the system for various values of the
reduced screening lengthkas and the amplitude of the external potential. We find clear indication of a reentrant
liquid phase over a significant region of the parameter space. Our simulations therefore show that the system
of soft disks behaves in a fashion similar to charge stabilized colloids, which are known to undergo an initial
freezing, followed by a remelting transition as the amplitude of the imposed, modulating field produced by
crossed laser beams is steadily increased. The detailed analysis of our data shows several features consistent
with a recent dislocation unbinding theory of laser induced melting.
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I. INTRODUCTION

The liquid-solid transition in two-dimensional systems
particles under the influence of external modulating pot
tials has recently attracted a fair amount of attention fr
experiments@1–7#, theory @8,9#, and computer simulation
@10–13#. This is partly due to the fact that well controlle
clean experiments can be performed using colloidal parti
@14# confined between glass plates~producing essentially a
two-dimensional system! and subjected to a spatially per
odic electromagnetic field generated by interfering two,
more, crossed laser beams. One of the more surprising
sults of these studies, where a commensurate, o
dimensional, modulating potential is imposed, is the fact t
there exist regions in the phase diagram over which one
serves reentrant@4–6# freezing/melting behavior. As a func
tion of the laser field intensity, the system first freezes from
modulated liquid to a two-dimensional triangular solid.
further increase of the intensity confines the partic
strongly within the troughs of the external potential, su
pressing fluctuations perpendicular to the troughs, wh
leads to an uncoupling of neighboring troughs and to rem
ing.

Our present understanding of this curious phenome
has come from early mean field density functional@8# and
more recent dislocation unbinding@9# calculations. The mean
field theories neglect fluctuations and therefore cannot
plain reentrant behavior. The order of the transition is p
dicted to be first order for small laser field intensities, thou
for certain combinations of external potentials~which in-
cludes the specific geometry studied in the experiments
in this paper! the transition may become second order af
going through a tricritical point. In general, though me
field theories are applicable in any dimension, the results
expected to be accurate only for higher dimensions and l
ranged potentials. The validity of the predictions of su
theories for the system under consideration is, therefore
doubt.

A more recent theory@9# extends the dislocation unbind
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ing mechanism for two-dimensional melting@15,16# to sys-
tems under external potentials. For a two-dimensional tri
gular solid subjected to an external one-dimensio
modulating potential, the only dislocations involved a
those that have their Burger’s vectors parallel to the trou
of the potential. The system, therefore, maps onto an an
tropic, scalar Coulomb gas~or XY model! @9# in contrast to a
vector Coulomb gas@15,16# for the pure two-dimensiona
~2D! melting problem. Once bound dislocation pairs are
tegrated out, the melting temperature is obtained as a fu
tion of the renormalized or ‘‘effective’’ elastic constant
which depend on external parameters such as the streng
the potential, temperature, and/or density. Though exp
calculations are possible only near the two extreme limits
zero and infinite field intensities, one can argue effectiv
that a reentrant melting transition is expected on gen
grounds quite independent of the detailed nature of the in
action potential for any two-dimensional system subject
such external potentials. The actual extent of this reg
could, of course, vary from system to system. In additio
these authors predict that the autocorrelation function of
Fourier components of the density~the Debye-Waller corre-
lation function! decays algebraically in the solid phase at t
transition, with an universal exponent which depends only
the geometry and the magnitude of the reciprocal lattice v
tor.

Computer simulation results in this field have so far be
inconclusive. Early simulations@10# involving colloidal par-
ticles interacting via the Derjaguin, Landau, Verwey, a
Overbeek~DLVO! potential@14# found a large reentrant re
gion in apparent agreement with later experiments. On clo
scrutiny, though, quantitative agreement between simula
and experiments on the same system~but with slightly dif-
ferent parameters! appears to be poor@6#. Subsequent simu
lations @11–13# have questioned the findings of the earli
computation, and the calculated phase diagram does
show a significant reentrant liquid phase.

Motivated, in part, by this controversy, in Ref.@17# we
have recently investigated the freezing~melting! behavior of
©2002 The American Physical Society09-1
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STREPP, SENGUPTA, AND NIELABA PHYSICAL REVIEW E66, 056109 ~2002!
a two-dimensional hard disk system in an external poten
The pure hard disk system is rather well studied@18–21# by
now and the nature of the melting transition in the absenc
external potentials reasonably well explored. Also, there
ist colloidal systems with hard interactions@14#, so that, at
least in principle, actual experiments using this system
possible. Finally, a hard disk simulation is relatively cheap
implement and one can make detailed studies of large
tems without straining computational resources. By th
calculations we obtained a clear signature of a reentrant
uid phase showing that this phenomenon is indeed a gen
one as indicated in Ref.@9#.

In the present paper we studied a system of particles
teracting by a DLVO potential in an external periodic pote
tial, to determine on one hand whether this reentrance
nario is dependent on the range of interaction, and on
other hand to compare it with experimental results@6#.

The phase diagram has been computed by an applica
of finite size scaling methods similar to the methods used
our study of the hard disk systems in external potentials@17#.

The rest of our paper is organized as follows. In Sec
we specify the model and the simulation method includ
details of the finite size analysis used. In Sec. III we pres
our results for both zero and nonzero external potential
particular, results for the order parameter and its cumula
with a discussion on finite size effects. We also present o
quantities such as order parameter susceptibility, correla
functions, and heat capacity, which further illustrates the
ture of the phase transitions in this system. In Sec. IV
discuss our work in relation to the existing literature on t
subject, summarize, and conclude.

II. MODEL AND METHOD

A. The model

1. Potentials

We study a system ofN soft disks in a two-dimensiona
box of fixed volume interacting with the DLVO pair potenti
f(r i j ) @14# between particlesi and j with distancer i j ,

f~r i j !5
~Z* e!2

4pe0e r
S exp~kR!

11kR D 2 exp~2kr i j !

r i j
, ~1!

where R is the radius of the particles, k
5A(e2/e0e rkBT)( inizi

2 is the inverse Debye screenin
length,Z* is the effective surface charge, ande r is the di-
electric constant of water. We usede r578 and, unless oth
erwise indicated, 2R51.07mm andZ* 57800. Additionally
we chose a temperature ofT5293.15 K, and the particle
density such that the particle spacing of an ideal lattice
as52.52578mm. We then obtain different values for th
reduced inverse screening lengthkas by varying k as
needed. In our simulation we set 2R to be the unit length.
The potential in Eq.~1! mainly depends on the value ofkas ,
so all features found for this system should be valid also
slightly different values of the other parameters mention
above.
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In addition, a particle with coordinates (x,y) is exposed to
an external periodic potential of the form

V~x,y!5V0 sin~2px/d0!. ~2!

The constantd0 in Eq. ~2! is chosen such that, for a densi
r5N/SxSy , the modulation is commensurate to a triangu
lattice of disks with nearest neighbor distanceas : d0

5asA3/2.
The main parameters which define our system arekas and

the reduced potential strengthV0 /kBT5V0* , wherekB is the
Boltzmann constant.

2. Box geometry

All of the data~unless otherwise indicated! presented for
V0* ,0.2 are obtained by a simulation in a rectangular box
size SxSy (Sx /Sy5A3/2) and periodic boundary condition
in thex andy directions, i.e., exactly as in Ref.@17#. We will
refer to it as the ‘‘fixed box geometry’’ in the rest of th
paper.

For V0* 5” 0 the external potential modulates the structu
of the fluid and the particles form troughs oriented in they
direction. In order to avoid unphysical results, forV0* >0.2
we mainly used a box with periodic boundary conditions
thex direction andmovable wallsin they direction, see Fig.
1, and we will call this the ‘‘variable box geometry.’’ Th
simulation box volume is fixed as well as the side lengthSx ,
but in thex direction the box is divided into slabs of widt
d0, centered around the minima of the external periodic
tential. The wall at the end of each slab can move at mosas
upwards or downwards around its equilibrium position:ubu
,as , such that each slab has a variable length betweenSy
22as and Sy12as in the y direction. The averaged bo
geometry still isSx /Sy5A3/2 as for the fixed one. The con
straint for neighboring walls is to have a distance less th
as/2: ucu,as/2. The walls are hard, so no particle can cro
them. This is indicated as a thick solid line in Fig. 1. T
accommodate the particles in the box as well as possi
additional ‘‘boundary’’ particles were placed in the cent
( f 5d0/2) behind each wall at a distance ofe5as/2. The
boundary particles interact with the particles in the box
the usual DLVO potential, but do not interact with ea
other. The motion of the walls is achieved with a Mon
Carlo procedure keeping the volume constant, so we are
in the N-V-T ~but variable shape! ensemble.

FIG. 1. Schematic picture of the simulation box geometry us
mainly for V0* >0.2.
9-2
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PHASE TRANSITIONS OF SOFT DISKS IN EXTERNAL . . . PHYSICAL REVIEW E 66, 056109 ~2002!
The movable walls are chosen to give the system a
tional degrees of freedom to relax internal stress. We w
led to this geometry by some unphysical results when us
the fixed box geometry and higher particle numbersN
>4096). For a detailed discussion, see, the end of Sec. I

B. The method

1. Numerical details

We perform N-V-T Monte Carlo ~MC! simulations
@22,23# for the system with interactions given by Eqs.~1!
and ~2! for various values ofV0* andkas .

Averageŝ •& of observables have been obtained with t
canonical measure. In order to obtain thermodynamic qu
tities for a range of system sizes, we analyzed various qu
tities within subsystems and used^•&L to denote averages i
it. The subsystems are of sizeLx3Ly , whereLx andLy are
chosen asLy5Las and Lx5LyA3/25Ld0, consistent with
the geometry of the triangular lattice. A sub-box of sizeL
53 as shown in Fig. 2 contains on averageNL5L259 par-
ticles.

Most of the simulations described below have been p
formed for a total system size ofN51024 andN54096
particles, additional ones withN5400. Phase transition
have been studied in most cases by starting with the ord
solid and increasingkas for fixed V0* . Runs wherekas is
decreased were also performed for comparison.

A typical simulation run with 107 Monte Carlo steps
~MCS! per particle~including 33106 MCS for relaxation!
took about 50 CPU hours on a PII 500-MHz PC. In additi
to ordinary ~local! MC moves, we also used ‘‘trough
moves,’’ by which particle placements in neighborin
troughs are tried. Besides producing faster equilibration,
cluding such moves ensures that at highV0* the formation of
dislocations is not artificially hindered since particles can

FIG. 2. Schematic picture of the system geometry showing

direction GW 1 along which crystalline order develops at the mod
lated liquid to solid transition. The four vectors obtained by rotat

GW 1 anticlockwise by 60 ° and/or reflecting about the origin a
equivalent.
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effect bypass each other more easily—this is very unlik
with purely local MC moves.

2. Observables

The potential energy of the system per particle« is com-
puted as

«* 5
1

NkBT (
i 51

N F(
j . i

f~r i j !1V~xi ,yi !G ~3!

and the heat capacity per particle from the fluctuations of«* ,

cV

kB
5NŠ~«* 2^«* &!2

‹. ~4!

The nature of the fluid-solid phase transition in two d
mensions has been a topic of controversy throughout the
40 years@15,16,19–21,24–26#. It is well known that true
long-range positional order is absent in the infinitely lar
system due to low energy, long wavelength excitations
that translational correlations decay algebraically. Accord
to the dislocation unbinding mechanism@15,16,25#, the two-
dimensional solid~with quasi-long-ranged positional an
long-ranged orientational order! first melts into a ‘‘hexatic’’
phase with no positional order but with quasi-long-rang
orientational order signified by an algebraic decay of bo
orientational correlation. A second Kosterlitz-Thouless~KT!
transition, driven by disclination unbinding, leads to melti
of the hexatic into the liquid, where both the orientation
and positional orders are short ranged. Therefore a us
order parameter in zero external field is the orientational
der parameter. For a particlej located atrW j we define the
local orientational order

c6,j5
1

Nb
(
l 51

Nb

ei6u l j ,

whereNb is the number of nearest neighbors andu l j , is the
angle between the axisrW l2rW j and an arbitrary reference axis
For the total system we use

c65U1

N (
j 51

N

c6,jU
and the orientational correlation function

g6~r i j !5u^c6,i* c6,j&u.

In an external periodic field given by Eq.~2!, however,
the bond-orientational order parameter is nonzero even in
fluid phase@9,12#. This is because forV0* 5” 0 we have now a
‘‘modulated’’ liquid, in which local hexagons consisting o
the six nearest neighbors of a particle are automatically
ented by the external field. Thus^c6& is nonzero both in the
~modulated! liquid and the crystalline phase and it cannot
used to study phase transitions in this system. The o
parameters corresponding to a solid phase are the Fo
components of the~nonuniform! densityr(rW) calculated at
the reciprocal lattice points$GW %. This ~infinite! set of num-

e

-
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STREPP, SENGUPTA, AND NIELABA PHYSICAL REVIEW E66, 056109 ~2002!
bers are all zero~for GW 5” 0) in an uniform liquid phase and
nonzero in a solid. We restrict ourselves to the star consis
of the six smallest reciprocal lattice vectors of the tw
dimensional triangular lattice. In the modulated liquid pha
that is relevant to our system, the Fourier components co
sponding to two out of these six vectors, viz., those in
direction perpendicular to the troughs of the external pot
tial, are nonzero@8#. The other four components of this s
consisting of the one in the directionGW 1 ~as defined for the
ideal crystal in Fig. 2!, and those equivalent to it by symme
try, are zero in the~modulated! liquid and nonzero in the
solid ~if there is true long-range order!. We therefore use the
following order parameter:

cG1
5U1

N (
j 51

N

exp~ iGW 1•rW j !U,
whererW j is the position vector of thej th particle. The corre-
sponding susceptibilityxG1

is

kBTxG1
5L2@^~cG1

!2&2^cG1
&2#. ~5!

To measure the positional correlation, we chose the Deb
Waller correlation function, which we define as follows:

CGW 1
~RW !5u^eiGW 1•[uW (RW )2uW (0)]&u,

whereRW points to the elementary cell of the ideal lattice, a
uW (RW ) is the deviation of the actual particle position from t
ideal lattice:rW5RW 1uW (RW ). In this case we have chosen th
direction ofRW to lie along they axis ~i.e., along the troughs
of the potential!. In the solid we expect this quantity d
decay algebraically, i.e.,CGW (y)}1/yhGW @9,15#, wherehGW de-
pends on the elastic constants.

cG1
is sensitive to the phase transition where positio

order is lost. Therefore, when decreasingV0* we expect the
phase boundary to converge to the corresponding trans
at zero external potential. But in contrast toV0* 5” 0, where
the crystal is oriented by the external potential, atV0* 50 it is
only weakly fixed by the boundary conditions and can s
to rotate, so we cannot applycG1

there. For this purpose w

use a slightly modified positional order parameterc̃G1
at

V0* 50: the phase information ofc6 ~of course, before taking
the absolute value! is used to determine the orientation of th
crystal, and then a tilted coordinate system is used to c
pute c̃G1

. We applied the same method when calculat

CGW 1
(y) at V0* 50.

We have determined phase transition points by the o
parameter cumulant intersection method. The fourth-or
cumulantUL of the order parameter distribution is given b
@27#:

UL~V0* ,kas!512
^cx

4&L

3^cx
2&L

2
. ~6!
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In order to distuingish between the cumulants ofc6 andcG1
,

we denote them withUL,6 and UL,G , respectively. In the
liquid ~short-ranged order! UL→1/3 and in the solid~long-
range order! UL→2/3 for L→`. In case of a continuous
transition close to the transition point, the cumulant is onl
function of the ratio of the system size'Las and the corre-
lation lengthj: UL(Las /j). Sincej diverges at the critical
point, the cumulants for different system sizes intersec
one point:UL1

(0)5UL2
(0)5U* . U* is a nontrivial value,

i.e., U* 5” 1/3 andU* 5” 2/3. Even for first-order transitions
these cumulants intersect@28# though the valueU* of UL at
the intersection is not universal any more. The intersect
point can, therefore, be taken as the phase boundary reg
less of the order of the transition. This is useful since
order of the melting transition in 2D either in the absen
@15,16,19–21,24–26# or with @8–13# external potentials is
not unequivocally settled. And there is also another aspec
our special case: since the positional order correlation is
dicted to decay algebraically in the solid phase~quasi-long-
ranged order!, the whole solid can be seen as consisting o
line or area of critical points with temperature-depend
critical indiceshGW (T) @15#. In that case we expect the cumu
lants to merge at a nontrivial value at the onset of the so
phase instead of intersecting, yielding a line of intersectio
We indeed observed this behavior for hard disks in high
ternal potentials@17#. For the same reasons the same beh
ior is expected for thec6 cumulants at the liquid-hexatic
transition and in the hexatic phase@19#. Also the very similar
2D-XY-spin model shows this behavior when using the m
netization as the order parameter@29#.

Note that though the order parameter^cG1
& decays to

zero with increasing system size even in the 2D solid~as-
suming quasi-long-ranged order there!, the cumulants will
stay at the nontrivial value regardless ofL. So for L→`
there should be a jump from 1/3 to this nontrivial value wh
crossing the phase boundary from liquid to solid, which u
derlines the usefulness of cumulants.

In order to map the phase diagram we systematically v
the system parametersV0* andkas to detect order paramete

FIG. 3. Cumulant of thec6 order parameter versuskas for
various values of the system sizeL (N54096, V0* 50).
9-4
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PHASE TRANSITIONS OF SOFT DISKS IN EXTERNAL . . . PHYSICAL REVIEW E 66, 056109 ~2002!
cumulant intersection—or merging points, which are th
identified with the phase boundary.

III. RESULTS AND DISCUSSION

A. Zero external potential

In this section we analyze the system properties for z
external field. In particular, we present results for the or
parameter, the cumulants, the correlation functions, and
heat capacity for different values ofkas . In these studies we
used the fixed box geometry.

In Fig. 3 the cumulant of thec6 order parameter versu
kas is shown for different subsystem sizes. We identify t
phase transition value ofk6as at about 14.42 by locating th
cumulant intersection point. Since the positional order is
well defined in two-dimensional systems, the positional
der parameterc̃G1

shows a strong system-size dependen

see Fig. 4. The cumulants ofc̃G1
intersect at a value o

kGas'14.25, which is slightly smaller thank6as . This is in
agreement with a Kosterlitz-Thouless-Halperin-Nelso

FIG. 4. Average~top! and cumulant~bottom! of the c̃G1
order

parameter versuskas for various values of the system sizeL (N
54096, V0* 50).
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Young ~KTHNY ! two stage melting scenario, in which th
solid and the fluid phase are separated by a hexatic regio
the phase diagram, in which the positional order is sh
ranged and the bond-orientational order is long ranged. B
effects are detected by the two order parameters,c6 being
sensitive for the bond-orientational order andc̃G1

on the
positional order. Surprisingly, however, though in the case
the hexatic phase one expects thec6 cumulants to coincide,
they obviously do not in Fig. 3~see also Ref.@19#!.

The Debye-Waller correlation functionsCG1
(y) for dif-

ferent values ofkas are shown in Fig. 5. At the transition
valuekGas514.25 forN54096 we find a power law depen
dency ofCG1

(y) from y with an exponenthG1
'0.28, which

is well within the predicted range of@1/4,1/3#. In Fig. 6 the
orientational correlation function versus distance is show
This function reveals a power law dependency of the bo
orientation correlations atk6as , the exponents value is abou
1/4. The value of the exponenth6 at the transition has bee

FIG. 5. Debye-Waller correlation function versusy for various
values ofkas(N54096, V0* 50). Dashed line, schematic pictur
of the functional decay with exponent 1/4; dotted line, schema
picture of the functional decay with exponent 1/3.

FIG. 6. Orientational correlation function versus distance
various values ofkas (N54096, V0* 50). Dashed line: schematic
picture of the functional decay with exponent 1/4.
9-5
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STREPP, SENGUPTA, AND NIELABA PHYSICAL REVIEW E66, 056109 ~2002!
predicted by the KTHNY theory to be 1/4@9#, which is in
agreement with our results.

In Fig. 7 ~top! we present the heat capacity data vers
kas for different system sizes. It is obvious that the he
capacity does not show a singularity as would be expecte
case of a first-order or a conventional second-order tra
tion. The peak maxima are not very sharp, but are roug
located close to the value ofk6as , where thec6 order pa-
rameter cumulants intersect. The peak maxima thus do
agree with the cumulant intersection point of thec̃G1

order
parameter, which is again in agreement with the KTHN
scenario. We note that the identification of the phase tra
tion point by the heat capacity maxima may result in m
leading results on the location of the transition points in
phase diagram. In particular, for a smaller system ofN
5400 particles we find that configurations wherein the cr
tal is rotated by a tilt angle ofa5630 ° (a extracted from
the phase information ofc6) may be present. Since this
incompatible with the box geometry it leads to a higher e
ergy and a lower measuredcG1

. The value ofc̃G1
, on the

other hand, is not appreciably altered. This is shown in

FIG. 7. Heat capacity versuskas for various numbers of par
ticles. Top figure:V0* 50 computed with fixed box geometry. Bo
tom figure:V0* 52 computed with variable box geometry.
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time evolution of that system in Fig. 8. We also show t
configuration of a tilted crystal witha530 ° ~3,000,000
MCS! in Fig. 9 ~top!, and of an ‘‘correctly’’ aligned crystal
(a50 °, 7,700,000 MCS! ~bottom!.

FIG. 8. System evolution versus Monte Carlo stepsN
5400, V0* 50, kas514.4). From bottom to top: energye* , c6

order parameter, anglea of lattice direction,cG order parameter,

c̃G .

FIG. 9. Configurations after 3 000 000 MCS~top! and 7 700 000
MCS ~bottom! from the system of Fig. 8.
9-6
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PHASE TRANSITIONS OF SOFT DISKS IN EXTERNAL . . . PHYSICAL REVIEW E 66, 056109 ~2002!
B. External periodic potential

In this section we analyze the system properties in
presence of a periodic external potential. The studies in
section are mainly done with variable box geometry. Co
parative studies with fixed box geometry show that
method does not lead to artificial features, but rather gi
improved results. For more details see the discussion of
Debye-Waller correlation function at the end of this sectio

Two examples for thekas dependency of thecG1
order

parameter and the cumulants for an external potential am
tude ofV0* 52 andV0* 51000 are shown in Figs. 10 and 1
We note that the cumulant intersection, which can be cle
identified for V0* 52 in Fig. 10 is developing towards a
intersection ‘‘line’’ for V0* 51000, a behavior that was foun
in case of the hard disk system in external potentials@17# as
well as in related systems with a KT transition like th
XY-spin model@29#. Another example is shown in Fig. 12
Therekas is kept fixed at 15.3 andV0* is varied. The starting
point at V0* 50.2 is in the modulated liquid phase, cross
slightly the solid~‘‘laser induced freezing’’!, and reenters the

FIG. 10. Average~top! and cumulant~bottom! of the cG1
order

parameter versuskas for V0* 52 and various system sizesL(N
54096).
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modulated liquid at higherV0* ~‘‘reentrance’’!. This is al-
ready a first sign of a reentrant phase transition scenario.
the phase diagram, these cumulant intersection or mer
values were used.

In Fig. 13 the cumulant intersection values are shown a
function of V0* for fixed box geometry. We observe thatU*
is not an universal number but, nevertheless, goes to a
iting value for largeV0* @29#.

The hysteresis effects on the location of the transit
point have been analyzed for the case ofV0* 52 by a time
consuming reverse density quench simulation, in which
path in phase space was chosen in the direction opposi
the standard path. The results of this study are shown in
14. Comparing these results with those of Fig. 10 reve
quite close agreements showing that only small hyster
effects are present in the system.

ThecG1
order parameter susceptibilitiesxG1

are shown in

Fig. 15 versuskas for different system sizes. We note th
close to the transition a maximum develops, the value of
maximum increasing with the system size. In Fig. 16 t
susceptibilities of the largest subsystems (L532) as func-

FIG. 11. Average~top! and cumulant~bottom! of the cG1
order

parameter versuskas for V0* 51000 and various system size
L(N54096).
9-7
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tions of kas are compared for different values ofV0* .
Clearly the peak position forV0* 52 is shifted to larger val-
ues compared to the cases withV0* 50.2 andV0* 51000. This
feature is another sign of a ‘‘reentrant’’ phase transition s
nario in the phase diagram. Compared to the cumulant in
section values,xG1

maxima are located at slightly highe

kas . This may be due to finite size effects, which often sh
the feature that phase transition points in finite systems
shifted to slightly different values depending on the obse
able under investigation. In particular, one expects~and we
get! a shift towards parameter values in the disordered reg
~here a liquid, i.e., higherkas) for the average order param
eter and the susceptibility.

In Fig. 7 ~bottom! the heat capacity forV0* 52 and differ-
ent system sizes is shown. The peak is nearly independe
system size and shifted towards the liquid phase with res
to the order parameter cumulant intersection value, i.e.,
same behavior as forV0* 50.

The advantage of the variable box geometry, especi
for large systems, can be seen best by looking at the De
Waller correlation function. In Fig. 17~top! an example is
shown for fixed box geometry. The crossing from the so
phase with an algebraic decay to the modulated liquid w

FIG. 12. Average~top! and cumulant~bottom! of thecG1
-order

parameter versusV0* for kas515.3 and various values ofL and
variable box geometry (N51024).
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exponential decay is not monotonic, but atkas515.7,
CG1

(y) drops to zero aty5Sy/2, which is not physically

meaningful. At a higher valuekas516 it rises and then falls
again atkas516.4, showing an exponential decay as e
pected. In variable box geometry this feature does not sh
up, see Fig. 17~bottom!. Here we have a smooth transitio
from solidlike to liquidlike behavior. We explain this strang
behavior atkas515.7 in fixed geometry as follows: conside
a system withN510 000 particles. Without dislocation
there will be an ideal lattice withNt5100 particles in each o
the 100 troughs. Assuming dislocation unbinding as the m
ing mechanism, consider the existence of some dislocat
in the system with opposite burgers vectorsbW 56aseW y . One
of these dislocations increases the number of particles in
troughs by one, while the other decreases it by one. We
have, for example, a situation where half of the troughs
100 particles, and the other half has either 101 or 99 p
ticles. If we now for simplicity assume that the distance b

FIG. 13. Cumulant intersection values of thecG1
-order param-

eter versusV0* for fixed box geometry (N51024). The data for
variable box geometry is similar.

FIG. 14. Cumulant of thecG1
order parameter versuskas for

V0* 52 and various system sizesL for a density quench path (N
54096).
9-8
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PHASE TRANSITIONS OF SOFT DISKS IN EXTERNAL . . . PHYSICAL REVIEW E 66, 056109 ~2002!
tween particles in a row isa5Ly /Nt , calculating the pair
correlation functiong(y) along a trough will yield two peaks
aroundy5Ly/2: one centered exactly aty5Ly/2 from the
troughs withNt5100 (a5as), and the other centered aty
5Ly/21as/2 due to the troughs withNt599 or Nt
5101 (a5” as). As consequence,CG1

(y5Ly/2) will be zero.
The same situation in the movable-wall geometry will n
show these problems: the troughs with 101 particles can
pand a bit, while those with 99 particles can contract. Now
every trough,a5as , and CG1

(y5Ly/2) is not necessarily
zero. Also, the formation of a dislocation pair costs less
ergy and is closer to the true infinite system value. The d
cussion above is in some sense similar to the 2D-XY-spin
model with a vortex in the center: in an infinite sample, t
spins to the left and to the right have opposite spin dir
tions, but periodic boundary conditions in a finite system w
try to align them, so that the formation of the vortex is d
turbed. Free boundary conditions will not cause this pr
lem.

FIG. 15. Susceptibility of thecG1
order parameter versuskas

for V0* 52 and various values of the system sizeL(N51024).

FIG. 16. Susceptibility of thecG1
order parameter versuskas

for various values ofV0* (L532, N51024).
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In zero external potential with fixed geometry the form
tion of a dislocation pair is not so problematic, since t
particles are not forced into troughs and have more deg
of freedom in movement. In the above example one end
line of Nt5101 particles could make a slight shift in thex
direction to access more space in they direction.

However, at the first data point in the solid closest to t
transition, we find an algebraic decayCG1

(y)}1/yhG1 with

hG1
in the range of 0.25–0.34 forV0* 50 –1000 andN

51024 particles. In Ref.@9# hG1
is predicted to be 1/4 at the

transition.

C. The phase diagram

For eachkas andV0* value we computed cumulantsUL,G

for a range of subsystem sizesL and located intersection o
merging points which we identify with the phase bounda
We have obtained a detailed phase diagram forN51024
particles, which is shown in Fig. 18 for fixed box geomet
~top! and for variable box geometry~bottom!. We want to
emphasize that there are only slight differences and the g

FIG. 17. Debye-Waller correlation functionCG1
(y) versusy for

V0* 52 and various values ofkas(N54096). Correlations for com-
putations with fixed box geometry~top! and variable box geometry
~bottom!.
9-9
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eral shape of the phase diagram is the same for both
geometries. AtV0* 50, also thec6 cumulant intersection
value is plotted for comparison. The values ofkas at the
transition initially rise and subsequently drop asV0* in-
creases. The maximumkGas values are found forV0* '1 –2.
These transition points separate a high density solid fro
low density modulated liquid. Thus, at a properly chos
kas , we observe an initial freezing transition followed by
reentrant melting at a higherV0* value. Such an effect ha
been found earlier in experiments on colloidal systems in
external laser field@4–6#.

In order to quantify residual finite size effects on t
phase diagram, we have computed the transition points
different total system sizes. The resulting phase diagrams
shown in Fig. 19, again for fixed~top! and variable box
geometry~bottom!. We note that with increasing system si
in fixed box geometry, all transition points are slight
shifted to the solid region, whereas for the variable box t
shift is towards the liquid region. One can see that the s
for the fixed box is much smaller at lowV0* , and for the

FIG. 18. Phase diagram. The points show the parameters fo
cumulant intersection of thecG1

order parameter (N51024). Top
picture: computations with fixed box geometry for allV0* . Bottom
picture: computations with variable box geometry for allV0* . At
V0* 50 the parameters for the cumulant intersection of thec6 order
parameter are shown for comparison.
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variable box it is much smaller at medium and highV0* . We
also found that the cumulant intersection point smears
strongly if using the fixed box,N>4096 and higherV0* ,
probably for the same reasons as those mentioned in
discussion of the Debye-Waller correlation function. In t
variable box there was no such problem. These features w
the reason for us to use mainly the fixed box forV0* ,0.2 and
the variable box forV0* >0.2. By the way, the same Debye
Waller problem also occurs when simulating hard disks
external periodic potentials,N>4096 andV0* medium or
high, and can be solved again by using the variable b
geometry.

However, for all system sizes the structure of the ph
diagram with a pronounced minimum at intermediate valu
of V0* is not affected by the shifts.

We find difference in the value ofkGas at the transition
between the infinite and zero external potential cases to
kGas(V0* 5`)2kGas(V0* 50)'0.82. This is not far away
from 0.608 which is a value predicted by Ref.@9#.

We have also performed simulations with slightly alter
parameters, i.e., using particles with diameter 2R53 mm,

he FIG. 19. Finite size effects on the phase diagram. The po
show the parameters for the cumulant intersection of thecG1

order
parameter for different total system sizes. Top picture: computat
with fixed box geometry for allV0* . Bottom picture: computations
with variable box geometry for allV0* .
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PHASE TRANSITIONS OF SOFT DISKS IN EXTERNAL . . . PHYSICAL REVIEW E 66, 056109 ~2002!
effective surface chargeZ* 520 000, andas58 mm, to
match the experiments in Ref.@6#. As expected, we only
observe a slight shift of the phase diagram ofD(kas)
'0.35 towards higher values ofkas . The experimental
phase diagram@6# qualitatively has the same shape as o
results, but shows larger freezing and reentrance regions
is shifted to higher values ofkas at aboutD(kas)'4.5 on
average. The reasons for these differences are probably
to the particle interaction. We only use pairwise interacti
which is a good approximation for low particle densiti
@30#. But for higher particle densities many-body interactio
play a role because of macroion screening, which result
an effective pair potential that has considerable deviati
@30# from a pure Yukawa-like potential like ours. In particu
lar, there could be an attractive part.

D. Scaling behavior

We next try to determine the order of the phase transiti
encountered in this system for two values ofV0* . In order to
investigate this issue we studied the scaling behavior of
order parameter, susceptibility, and the order parameter
mulant near the phase boundary for a small~2! and a large
~1000! V0* .

From the finite size scaling theory~for an overview, see
Ref. @23#! we expect these quantities to scale as@31#

^cG1
&LLb; f ~L/j!, ~7!

xLkBTL2c;g~L/j!, ~8!

UL;h~L/j!. ~9!

Here b5b/n, c5g/n ~for critical scaling!, and f , g, h

are scaling functions. Definingk̃5(kas2kGas)/kGas , we
expect the correlation lengthj to diverge asj}k̃2n for an
ordinary critical point, while for a KT transition we have a
essential singularity andj}exp(ak̃2ñ) when approaching the
transition from the liquid side.

In Fig. 20 we have plotted the left hand sides of E
~7!–~9! versusL/j for V0* 51000, where data points of th
variable box geometry for 15.2<kas<16.0 have been con
sidered andkGas515.1, obtained by cumulant intersectio
In order not to introduce an unwarranted bias, we have se
rately considered ordinary critical scaling~left column! and a
KT scaling form ~right column! and adjusted the values o
the parametersb, c, andn, or a, b, c, andñ, till we obtained
the collapse of our data onto a single curve determined b
least squares estimator.1 Good collapse of our data is ob
served for both scaling forms, the numerical values forñ,
2b5h, and c522h for KT scaling (2b'0.28, c

'1.70, ñ'0.37) are relatively close to the predicted valu

1One remark concerning the KT scaling: the errors inñ anda are

relatively big because, for example, increasingñ and decreasinga
by an appropriate amount resulted in a nearly equally good
lapse.
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@9# (2b5h51/4, c51.75, ñ50.5). The situation is simi-
lar for smallV0* 52, the quality of the collapse being com
parable to that ofV0* 51000. The critical parameters wer
obtained in this case for values 15.4<kas<16.2, with
kGas515.37.

We have a good internal consistency betwe
h50.25–0.33 extracted from the Debye-Waller correlati
function, and the values obtained from data collapsingh
50.28 for V0* 51000 andh50.36 for V0* 52. Our results
for the numerical values of the parameters are summarize
Table I.

A more precise classification of the phase transitions w
the present data and system sizes is not easy. This top
left for future work, in particular, we plan to compute th
elastic properties of the system by a method recently de
oped for the hard disk system@21,26# and to test the KT
predictions@9#.

IV. SUMMARY AND CONCLUSION

In summary, we have calculated the phase diagram o
two-dimensional system of soft disks, interacting via
DLVO potential, in an external sinusoidal potential. We fin
freezing followed by reentrant melting transitions over a s
nificant region of the phase diagram in tune with results
hard disks@17#, previous experiments on colloids@4–6#, and
with the expectations of a dislocation unbinding theory@9#.
One of the main features of our calculation is the meth
used to locate phase boundaries. In contrast to earlier s
lations @10–13#, which used either the jump of the orde
parameter or specific heat maxima to locate the phase t
sition, we used the more reliable cumulant intersect
method. It must be noted that the specific heat in this sys
does not show a strong peak at the phase transition den
so that its use may lead to confusing results. This, in
opinion, may be the reason for part of the controversy in t
field. It is possible that earlier simulations which us
smaller systems and no systematic finite size analysis
have overlooked this feature ofcV , which becomes apparen
only in computations involving large system sizes. We ha
shown that finite size scaling of the order parameter cum
lants as obtained from subsystem or sub-block analysis
the other hand, yields an accurate phase diagram.

What is the order of the phase transition? We know t
@19–21# for the pure hard disk system in two dimension
this question is quite difficult to answer and our present
derstanding@21# is that this system shows a KTHNY trans
tion. In our system of soft disks, for zero external potent
we can rule out a strong first-order transition, althou
smaller systems show a feature~double peak in the interna
energy! that mimics such a behavior. We find several featu
which are consistent with the KT theory, but also one wh
is not. Upon turning on the external periodic potential, t
difference between the hexatic and liquid disappears, an
~anisotropic! KT transition @9# from the modulated liquid
into the solid is expected. Our results show several featu
which suggest that this is what we have, but there are
some ~not large! deviations from theory. Though we hav
discussed these observations in the rest of the paper, we
l-
9-11
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TABLE I. Parameters in the scaling plots@see Fig. 20# for V0* 52 andV0* 51000. The first three param-
eter columns are for critical scaling, the last four for KT scaling. The last line shows the predictions of KT
theory.

kGas b c n b c ñ a

V0* 51000 15.1 0.130~12! 1.61~8! 1.5~2! 0.14~1! 1.70~3! 0.37~6! 1.45~40!

V0* 52 15.37 0.163~15! 1.68~5! 1.51~25! 0.18~3! 1.74~3! 0.40~5! 1.2~3!

KT theory 0.125 1.75 0.5 O(1)

FIG. 20. Scaling plots for the order parameter~first line!, the order parameter cumulant~second line!, and the order parameter susce
tibility ~third line! for V0* 51000 assuming critical~left column! and KT scaling~right column!. The total system size isN51024, forj we
have used the expressions given after Eq.~9!.
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the important ones below for clarity.
~1! The behavior of the cumulants near the transition

similar to an earlier work@29# on the XY system which
shows a KT transition.

~2! The specific heat is relatively featureless and does
scale with system size in the fashion expected of a true fi
order or conventional continuous transition.

~3! The decay of the correlation functions is similar
what is predicted@9# for an anisotropic scalar Coulomb ga

~4! For two test values ofV0* , the scaling of the orde
parameter, the susceptibility, and the cumulant may be
sonably described by the KT theory.

Of course, in order to resolve this issue unambiguou
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yet larger simulations are required. Also, we need to comp
elastic properties@21,26# of this system in order to compar
directly with the results of Ref.@9#. Work along these lines is
in progress.
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